Sign in →

Test Code WBSEQ Beta Globin Gene Sequencing, Varies

Useful For

Diagnosis of beta thalassemia intermedia or major

 

Identification of a specific beta thalassemia sequence variant (ie, unusually severe beta thalassemia trait)

 

Evaluation of an abnormal hemoglobin electrophoresis identifying a rare beta-globin variant

 

Evaluation of chronic hemolytic anemia of unknown etiology

 

Evaluation of hereditary erythrocytosis with left-shifted p50 oxygen dissociation results

 

Preconception screening when there is a concern for a beta-hemoglobin disorder based on family history

Genetics Test Information

Beta-globin gene (HBB) sequencing can be used to identify hemoglobin variants and the most common beta thalassemia sequence variants, including beta plus and beta zero thalassemias. It also identifies hyper-unstable hemoglobin variants and dominant beta thalassemia sequence variants, as well as other hemoglobin variants that cannot be identified by protein methods. Some hemoglobin disorders will not be detected by beta-globin gene sequencing, such as large deletional alterations and crossover events. As such, the results of this test should always be interpreted within the context of the protein studies and red blood cell indices.

Testing Algorithm

A hemoglobin electrophoresis evaluation (HBEL1 / Hemoglobin Electrophoresis Evaluation, Blood) is always indicated prior to beta-globin gene sequencing because these conditions can be complex and protein data allows accurate and rapid classification of the patient phenotype.

Method Name

Polymerase Chain Reaction (PCR)/Sanger Sequencing

Reporting Name

Beta Globin Gene Sequencing, B

Specimen Type

Varies


Ordering Guidance


For first-tier testing for beta thalassemia, order THEV1 / Thalassemia and Hemoglobinopathy Evaluation, Blood and Serum.

 

For first-tier testing for beta-globin variant detection, order HBEL1 / Hemoglobin Electrophoresis Evaluation, Blood.



Necessary Information


1. Patient's age is required.

2. Include recent transfusion information.



Specimen Required


Specimen Type: Whole blood

Container/Tube:

Preferred: Lavender top (EDTA)

Acceptable: Yellow top (ACD), green top (sodium heparin)

Specimen Volume: 4 mL

Collection Instructions:

1. Invert several times to mix blood.

2. Send whole blood specimen in the original tube. Do not aliquot.

Specimen Stability Information: Refrigerate 30 days(preferred)/Ambient 14 days

 

Specimen Type: Extracted DNA from whole blood

Container/Tube: 1.5- to 2-mL tube

Specimen Volume: Entire specimen

Collection Instructions:

1. Label specimen as extracted DNA and source of specimen

2. Provide volume and concentration of the DNA

Specimen Stability Information: Frozen (preferred)/Refrigerate/Ambient


Specimen Minimum Volume

Blood: 1 mL; Extracted DNA: 50 mcL at 50 ng/mcL concentration

Specimen Stability Information

Specimen Type Temperature Time Special Container
Varies Varies

Reject Due To

Moderately to severely clotted Reject

Clinical Information

Beta-globin gene sequencing is useful in the evaluation of beta-globin chain variants and beta thalassemia. It detects almost all beta-globin variants and the most common beta thalassemia sequence variants, although prevalence is ethnicity dependent. Because these conditions are often complex, this test should always be interpreted in the context of protein studies, such as hemoglobin electrophoresis and red blood cell indices.

 

The majority of beta-globin chain variants are clinically and hematologically benign; however, some have important clinical consequences, such as erythrocytosis, cyanosis/hypoxia, chronic hemolysis, or unexplained microcytosis. Most of the common clinically significant hemoglobin (Hb) variants (ie, HbS, HbC, HbE, and others) are easily distinguished by hemoglobin electrophoresis and do not require molecular analysis. In addition, they are frequently found in complex hemoglobin disorders due to multiple genetic variants, and accurate classification requires sequencing data within the context of protein data. In some instances, beta-globin sequencing is necessary to identify or confirm the identity of rare variants, especially those associated with erythrocytosis and chronic hemolytic anemia. Rare hyper-unstable variants (also termed dominant beta thalassemia mutations) result in hemolytic anemia and do not create protein stable enough to be detectable by protein methods, including stability studies. They are not always associated with elevated HbA2 or microcytosis and, therefore, can be electrophoretically silent. These require a high degree of clinical suspicion as all electrophoretic testing as well as stability studies cannot exclude this condition.

 

Beta thalassemia is an autosomal recessive condition characterized by decreased or absent synthesis of beta-globin chains due to sequence variants in the beta-globin gene (HBB). No abnormal protein is present and diagnosis by electrophoresis relies on hemoglobin fraction percentage alterations (ie, HbA2 or HbF elevations).

 

Beta thalassemia can be split into 3 broad classes (categorized by clinical features):

1. Beta thalassemia trait (also called beta thalassemia minor and beta thalassemia carrier) (B[A]B[+] or B[A]B[0])

2. Beta thalassemia intermedia (B[+]B[+] or B[+]B[0])

3. Beta thalassemia major (B[+]B[0] or B[0]B[0])

 

Beta thalassemia trait is typically a harmless condition with varying degrees of microcytosis and hypochromia and sometimes mild anemia. Transfusions are not required. Beta thalassemia intermedia is a clinical distinction and is characterized by a more severe degree of anemia than beta thalassemia trait with few or intermittent transfusions required. Later in life, these individuals are at risk for iron overload even in the absence of chronic transfusion due to increased intestinal absorption of iron. Beta thalassemia major typically comes to medical attention early in life due to severe anemia, hepatosplenomegaly, and failure to thrive. Skeletal changes are also common due to expansion of the bone marrow. Without appropriate treatment these patients have a shortened lifespan.

 

The majority of beta thalassemia variations (>90%) are point alterations, small deletions, or insertions, which are detected by beta-globin gene sequencing. The remaining beta thalassemia sequence variants are either due to large genomic deletions of HBB or, very rarely, trans-acting beta thalassemia variations located outside of the beta-globin gene cluster. Some rare beta-chain variants can be clinically or electrophoretically indistinguishable from beta thalassemia and cannot be confirmed without molecular analysis.

Reference Values

An interpretive report will be provided.

Interpretation

The alteration will be provided with the classification, if known. Further interpretation requires correlation with protein studies and red blood cell indices.

Day(s) Performed

Monday through Friday

Report Available

10 days

Specimen Retention Time

Whole blood: 2 weeks; DNA: 3 months

Performing Laboratory

Mayo Clinic Laboratories in Rochester

Test Classification

This test was developed and its performance characteristics determined by Mayo Clinic in a manner consistent with CLIA requirements. It has not been cleared or approved by the US Food and Drug Administration.

CPT Code Information

81364-HBB (hemoglobin, beta) full sequence

LOINC Code Information

Test ID Test Order Name Order LOINC Value
WBSEQ Beta Globin Gene Sequencing, B 79401-6

 

Result ID Test Result Name Result LOINC Value
62128 Beta Globin Gene Sequencing, B 82939-0
43922 Interpretation 69047-9

Forms

1. New York Clients-Informed consent is required. Document on the request form or electronic order that a copy is on file. The following documents are available:

-Informed Consent for Genetic Testing (T576)

-Informed Consent for Genetic Testing-Spanish (T826)

2. Metabolic Hematology Patient Information (T810)

3. If not ordering electronically, complete, print, and send a Benign Hematology Test Request (T755) with the specimen.